Angular distribution of photon density waves radiance in media with different scattering anisotropy

Appl Opt. 2021 Nov 1;60(31):9858-9865. doi: 10.1364/AO.439955.

Abstract

Statistical modeling of pulsed frequency responses of the light field radiance by an isotropic point source was performed by Monte Carlo technique. Scattering properties of the medium were simulated by the Henyey-Greenstein phase function with different anisotropy factor values. Angular distributions of the pulsed field and amplitudes of the photon density waves in a certain range of parameters were shown to have a qualitatively different character for media with quasi-isotropic and strongly anisotropic scattering. A comparison of the impulse and frequency characteristics was performed for media with strongly anisotropic scattering with different scattering phase functions yet the same anisotropy factor. The main difference in the angular distributions of the fields is observed in the rear hemisphere.