The Discovery of Potential MDM2 Inhibitors: A Combination of Pharmacophore Modeling, Virtual Screening, Molecular Docking Studies, and in vitro/in vivo Biological Evaluation

ChemMedChem. 2022 Feb 16;17(4):e202100517. doi: 10.1002/cmdc.202100517. Epub 2021 Dec 1.

Abstract

Small-molecule inhibitors of MDM2 that block the MDM2-p53 protein-protein interaction have been considered as potential therapeutic agents for the treatment of cancer. Here, we identify five highly potent inhibitors of MDM2 (termed as WY 1-5) that display significant inhibitory effects on MDM2-p53 interaction by using a combined strategy of pharmacophore modeling, virtual screening, and molecular docking studies. Among them, WY-5 is the most active MDM2 inhibitor with an IC50 value of 14.1±2.8 nM. Moreover, WY-5 significantly up-regulate the protein level of p53 in SK-Hep-1 cells harboring wild-type p53. In vitro anticancer study reveals that WY-5 markedly inhibits the survival of SK-Hep-1 cells. In vivo anticancer study suggests that WY-5 significantly inhibits the growth of SK-Hep-1 cells-derived xenograft in nude mice, with no observable toxicity. Our results demonstrate that WY-5 may be a promising candidate for the treatment of cancer harboring wild-type p53.

Keywords: MDM2; cancer treatment; molecular docking; p53; virtual screening.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Dose-Response Relationship, Drug
  • Drug Discovery*
  • Drug Evaluation, Preclinical
  • Female
  • Humans
  • Liver Neoplasms, Experimental / drug therapy
  • Liver Neoplasms, Experimental / metabolism
  • Liver Neoplasms, Experimental / pathology
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Models, Molecular
  • Molecular Structure
  • Proto-Oncogene Proteins c-mdm2 / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-mdm2 / metabolism
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • MDM2 protein, human
  • Proto-Oncogene Proteins c-mdm2