La1- x K x FeO3-δ: An Anion Intercalative Pseudocapacitive Electrode for Supercapacitor Application

ACS Omega. 2021 Nov 1;6(45):30488-30498. doi: 10.1021/acsomega.1c03902. eCollection 2021 Nov 16.

Abstract

The green energy alternative to a fossil fuel-based economy can be provided only by coupling renewable energy solution solutions such as solar or wind energy plants with large-scale electrochemical energy storage devices. Enabling high-energy storage coupled with high-power delivery can be envisaged though high-capacitive pseudocapacitor electrodes. A pseudocapacitor electrode with multiple oxidation state accessibility can enable more than 1e - charge/transfer per molecule to facilitate superior energy storage. K-doped LaFeO3 (La1-x K x FeO3-δ) is presented here as an electrode having a high pseudocapacitance storage, equivalent to 1.32e - charge/transfer per molecule, resulting in a capacity equivalent of 662 F/g at 1 mV/s scan rate by introduction of a layered potential over the Fe-ion octahedral to utilize higher redox state energies (Fe4+→ Fe2+). La/K ordering in orthorhombic perovskite (La1-x K x FeO3-δ) made the Fe4+ oxidation state accessible, and a systematic shift in the redox energies of Fe4+/3+ and Fe3+/2+ redox couples was observed with K+ ion doping in the A site of the LaFeO3 perovskite, which resulted in a high faradic contribution to the capacitance, coupled with anionic intercalation of H2O/OH- in the host perovskite lattice. The surface capacitive and diffusion control contributions for capacitance are about 42 and 58%, respectively, at -0.6 V, with a scan rate of 1 mV/s. A high gravimetric capacitance, equivalent to 619, 347, 188, 121, and 65 F/g, respectively, at 1, 2, 3, 5, and 10 A/g constant current, was observed for the La0.5K0.5FeO3-δ electrode. Up to 88.9% capacitive retention and 97% Coulombic efficacy were obtained for continuous 5000 cycles of charge/discharge for the La0.5K0.5FeO3-δ electrode. The gravimetric capacitance values of ASCs (activated carbon//La0.5K0.5FeO3-δ) are 348, 290, 228, and 147 F/g at current densities of 1, 2, 3, and 5 A/g, respectively. A maximum specific power of ∼3594 W/kg was obtained when the specific energy reached ∼117 Wh/kg at 5 A/g of current density.