The ethoxycarbonyl group as both activating and protective group in N-acyl-Pictet-Spengler reactions using methoxystyrenes. A short approach to racemic 1-benzyltetrahydroisoquinoline alkaloids

Beilstein J Org Chem. 2021 Nov 5:17:2716-2725. doi: 10.3762/bjoc.17.183. eCollection 2021.

Abstract

We present a systematic investigation on an improved variant of the N-acyl-Pictet-Spengler condensation for the synthesis of 1-benzyltetrahydroisoquinolines, based on our recently published synthesis of N-methylcoclaurine, exemplified by the total syntheses of 10 alkaloids in racemic form. Major advantages are a) using ω-methoxystyrenes as convenient alternatives to arylacetaldehydes, and b) using the ethoxycarbonyl residue for both activating the arylethylamine precursors for the cyclization reaction, and, as a significant extension, also as protective group for phenolic residues. After ring closure, the ethoxycarbonyl-protected phenols are deprotected simultaneously with the further processing of the carbamate group, either following route A (lithium alanate reduction) to give N-methylated phenolic products, or following route B (treatment with excess methyllithium) to give the corresponding alkaloids with free N-H function. This dual use of the ethoxycarbonyl group shortens the synthetic routes to hydroxylated 1-benzyltetrahydroisoquinolines significantly. Not surprisingly, these ten alkaloids did not show noteworthy effects on TPC2 cation channels and the tumor cell line VCR-R CEM, and did not exhibit P-glycoprotein blocking activity. But due to their free phenolic groups they can serve as valuable intermediates for novel derivatives addressing all of these targets, based on previous evidence for structure-activity relationships in this chemotype.

Keywords: acyl Pictet–Spengler reaction; alkaloids; antiproliferative activity; benzyltetrahydroisoquinolines; ion channels; protective group; total synthesis.

Grants and funding

This work was funded by the German Research Foundation (DFG, project BR 1034/7-1 to F. B., project SFB/TRR152 TP18 to M. S.).