Quantification of Cartilage Surface Degeneration by Curvature Analysis Using 3D Scanning in a Rabbit Model

Cartilage. 2021 Dec;13(2_suppl):1734S-1741S. doi: 10.1177/19476035211059597. Epub 2021 Nov 20.

Abstract

Objective: Accurate analysis to quantify cartilage morphology is critical for evaluating degenerative conditions in osteoarthritis (OA). Three-dimensional (3D) optical scanning provides 3D data for the entire cartilage surface; however, there is no consensus on how to quantify it. Our purpose was to validate a 3D method for evaluating spatiotemporal alterations in degenerative cartilages in a rabbit OA model by analyzing their curvatures at various stages of progression.

Design: Twelve rabbits underwent anterior cruciate ligament transection (ACLT) unilaterally and were divided into 4 groups: 4 weeks control, 4 weeks OA, 8 weeks control, and 8 weeks OA. 3D scanning, India ink staining, and histological assessments were performed in all groups. In 3D curvature visualization, the surfaces of the condyles were divided into 8 areas. The standard deviations (SD) of mean curvatures from all vertices of condylar surfaces and subareas were calculated.

Results: Regarding the site of OA change, curvature analysis was consistent with India ink scoring. The SD of mean curvature correlated strongly with the India ink Osteoarthritis Research Society International (OARSI) score. In curvature histograms, the curvature distribution in OA was more scattered than in control. Of the 8 areas, significant OA progression in the posterolateral part of the lateral condyle (L-PL) was observed at 4 weeks. The histology result was consistent with the 3D evaluation in terms of representative section.

Conclusions: This study demonstrated that 3D scanning with curvature analysis can quantify the severity of cartilage degeneration objectively. Furthermore, the L-PL was found to be the initial area where OA degeneration occurred in the rabbit ACLT model.

Keywords: 3D scanning; curvature; knee; osteoarthritis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anterior Cruciate Ligament / pathology
  • Anterior Cruciate Ligament Injuries*
  • Bone and Bones / pathology
  • Cartilage, Articular* / diagnostic imaging
  • Cartilage, Articular* / pathology
  • Osteoarthritis* / diagnostic imaging
  • Osteoarthritis* / pathology
  • Rabbits