Time-dependent simulation of photocurrent-detected two-dimensional spectroscopy of open systems

J Chem Phys. 2021 Nov 21;155(19):194113. doi: 10.1063/5.0067362.

Abstract

A new time-domain simulation protocol of two-dimensional electronic spectra with photocurrent detection is presented. Time-dependent density functional theory for open systems at finite temperature is applied to evaluate the photocurrent response to four laser pulses, and a non-perturbative phase-matching approach is implemented to extract the fourth-order photocurrent signal with a desired phase-matching condition. Simulations for an open three-level model indicates that transition dipoles interact resonantly with the incident pulses and that different sample-electrode couplings may be identified by appearance of different peaks/valleys in photocurrent spectra from different electrodes. Moreover, qualitative reproduction of experimental spectra of a PbS quantum dot photocell [Karki et al., Nat. Commun. 5(1), 5869 (2014)] reveals the stimulated electron dynamics.