Correcting whole-body motion capture data using rigid body transformation

Eur J Neurosci. 2021 Dec;54(11):7946-7958. doi: 10.1111/ejn.15531. Epub 2021 Nov 22.

Abstract

Using motion capture data as a part of mobile brain-body imaging (MoBI) recording has been increasing. With minimal linear algebra background, this paper explains how the rigid body transformation can be a useful preprocessing step for denoising and missing marker recovery. Such a transformation can provide insight and necessary-and-sufficient solutions requiring no assumption other than the minimum number of markers present. First, a simulation test using the empirical datasets from the AudioMaze project published from this journal's same volume demonstrates theoretical accuracy. The simulation results show that the rigid-body method perfectly recovers missing markers on a rigid body if a minimum of three marker positions is available. Second, the same transformation is applied to the empirical dataset. Before preprocessing, the raw data show that 15-80% of data frames had all markers present for rigid-body defined body parts. After using the rigid-body correction, most body parts recovered full markers in 90-95% of the data frames. The result also suggests the necessity for performing across-trial corrections for within-participant (42% missing detected in one of the body parts) and across-participants (11% missing). The discussion section introduces a solution and a performance summary for non-rigid-body marker correction using a neural network. Data support that the rigid body transformation is an intuitive and powerful correction method necessary for preprocessing motion capture data for neurocognitive experiments. The supporting information section contains a URL link to Matlab code and example data.

Keywords: Mobile brain-body imaging; audiomaze; missing data; spline interpolation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Brain
  • Computer Simulation
  • Human Body*
  • Humans
  • Motion
  • Movement*