Chemicals of concern in building materials: A high-throughput screening

J Hazard Mater. 2022 Feb 15;424(Pt C):127574. doi: 10.1016/j.jhazmat.2021.127574. Epub 2021 Oct 23.

Abstract

Chemicals used in building materials can be a major passive emission source indoors, associated with the deterioration of indoor environmental quality. This study aims to screen the various chemicals used in building materials for potential near-field human exposures and related health risks, identifying chemicals and products of concern to inform risk reduction efforts. We propose a mass balance-based and high-throughput suited model for predicting chemical emissions from building materials considering indoor sorption. Using this model, we performed a screening-level human exposure assessment for chemicals in building materials, starting from product chemical composition data reported in the Pharos Building Products Database for the USA. Health risks and MAximum chemical Contents from High-Throughput Screening (MACHTS) were determined, combining exposure estimates with toxicity information. Exposures were estimated for > 300 unique chemical-product combinations from the Pharos databases, of which 73% (25%) had non-cancer (cancer) toxicity data available. We identified 55 substances as chemicals of high concern, with actual chemical contents exceeding MACHTS by up to a factor 105, in particular diisocyanates and formaldehyde. This stresses the need for more refined investigations to select safer alternatives. This study serves as a suitable starting point for prioritizing chemicals/products and thus developing safer and more sustainable building materials.

Keywords: Consumer products; Human exposure; Human health risk; MAximum chemical Contents from High-Throughput Screening (MAC(HTS)); Organic chemicals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Construction Materials / toxicity
  • Environmental Exposure* / analysis
  • Formaldehyde
  • High-Throughput Screening Assays*
  • Humans
  • Risk
  • Risk Assessment

Substances

  • Formaldehyde