Can We Modify Maximal Speed Running Posture? Implications for Performance and Hamstring Injury Management

Int J Sports Physiol Perform. 2022 Mar 1;17(3):374-383. doi: 10.1123/ijspp.2021-0107. Epub 2021 Nov 18.

Abstract

Purpose: Sprint kinematics have been linked to hamstring injury and performance. This study aimed to examine if a specific 6-week multimodal intervention, combining lumbopelvic control and unning technique exercises, induced changes in pelvis and lower-limb kinematics at maximal speed and improved sprint performance.

Methods: Healthy amateur athletes were assigned to a control or intervention group (IG). A sprint test with 3-dimensional kinematic measurements was performed before (PRE) and after (POST) 6 weeks of training. The IG program included 3 weekly sessions integrating coaching, strength and conditioning, and physical therapy approaches (eg, manual therapy, mobility, lumbopelvic control, strength and sprint "front-side mechanics"-oriented drills).

Results: Analyses of variance showed no between-group differences at PRE. At POST, intragroup analyses showed PRE-POST differences for the pelvic (sagittal and frontal planes) and thigh kinematics and improved sprint performance (split times) for the IG only. Specifically, IG showed (1) a lower anterior pelvic tilt during the late swing phase, (2) greater pelvic obliquity on the free-leg side during the early swing phase, (3) higher vertical position of the front-leg knee, (4) an increase in thigh angular velocity and thigh retraction velocity, (5) lower between-knees distance at initial contact, and (6) a shorter ground contact duration. The intergroup analysis revealed disparate effects (possibly to very likely) in the most relevant variables investigated.

Conclusion: The 6-week multimodal training program induced clear pelvic and lower-limb kinematic changes during maximal speed sprinting. These alterations may collectively be associated with reduced risk of muscle strain and were concomitant with significant sprint performance improvement.

Keywords: front-side mechanics; hamstring strain; pelvic tilt; sprint kinematics; sprint mechanics; sprint performance.

MeSH terms

  • Athletic Performance* / physiology
  • Biomechanical Phenomena
  • Hamstring Muscles* / physiology
  • Humans
  • Leg Injuries*
  • Posture
  • Running* / physiology