Suppressing Li Dendrite Puncture with a Hierarchical h-BN Protective Layer

ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56109-56115. doi: 10.1021/acsami.1c15980. Epub 2021 Nov 17.

Abstract

Lithium metal has been perceived as an extremely attractive anode due to its superior energy density and low redox potential. However, great challenges affiliated with the operating security of Li metal batteries (LMBs) posed by growing Li dendrites hamper the widespread application of rechargeable LMBs. In this study, hierarchical hairball-like boron nitride (h-BN) was fabricated on a Li metal anode using the pulsed laser deposition (PLD) method. The chemically inert and mechanically robust dielectric h-BN coating on the Li anode can act as an interfacial layer conducive to enhancing the stability and extending the battery lifetime of LMBs by suppressing the formation and propagation of dendrites during the recurrent plating and stripping process. Moreover, the h-BN layer favors the drift of Li ions and mitigates electrolyte depletion, therefore demonstrating a reduced polarization in the voltage profiles, which further facilitates the uniform deposition of Li ions during battery operation. As proof, the Li/BN || BN/Li symmetrical cells can circulate steadily for 1800 h with no observable polarization at constant current density. Thus, the three-dimensional h-BN interface layer is efficacious for Li dendrite suppression during the practical application of LMBs, and it may also be promising for tackling dendrite issues in other metal ion battery systems.

Keywords: Li dendrites; Li metal anode; Li metal batteries; dendrite suppression; h-BN; interfacial protection layer.