Pressure-volume relationship by pharmacological stress cardiovascular magnetic resonance

Int J Cardiovasc Imaging. 2021 Nov 17. doi: 10.1007/s10554-021-02464-0. Online ahead of print.

Abstract

The variation between rest and peak stress end-systolic pressure-volume relation (ΔESPVR) is an index of myocardial contractility, easily obtained during routine stress echocardiography and never tested during dipyridamole stress-cardiac magnetic resonance (CMR). We assessed the ΔESPVR index in patients with known/suspected coronary artery disease (CAD) who underwent dipyridamole stress-CMR. One-hundred consecutive patients (24 females, 63.76 ± 10.17 years) were considered. ESPVR index was evaluated at rest and stress from raw measurement of systolic arterial pressure and end-systolic volume by biplane Simpson's method. The ΔESPVR index showed a good inter-operator reproducibility. Mean ΔESPVR index was 0.48 ± 1.45 mmHg/mL/m2. ΔESPVR index was significantly lower in males than in females. ΔESPVR index was not correlated to rest left ventricular end-diastolic volume index or ejection fraction. Forty-six of 85 patients had myocardial fibrosis detected by the late gadolinium enhancement technique and they showed significantly lower ΔESPVR values. An abnormal stress CMR was found in 25 patients and they showed significantly lower ΔESPVR values. During a mean follow-up of 56.34 ± 30.04 months, 24 cardiovascular events occurred. At receiver-operating characteristic curve analysis, a ΔESPVR < 0.02 mmHg/mL/m2 predicted the presence of future cardiac events with a sensitivity of 0.79 and a specificity of 0.68. The noninvasive assessment of the ΔESPVR index during a dipyridamole stress-CMR exam is feasible and reproducible. The ΔESPVR index was independent from rest LV dimensions and function and can be used for a comparative assessment of patients with different diseases. ΔESPVR index by CMR can be a useful and simple marker for additional prognostic stratification.

Keywords: Cardiovascular magnetic resonance imaging; Dipyridamole; End-systolic pressure–volume relation; Myocardial contractility.