Lowering Intraocular Pressure: A Potential Approach for Controlling High Myopia Progression

Invest Ophthalmol Vis Sci. 2021 Nov 1;62(14):17. doi: 10.1167/iovs.62.14.17.

Abstract

High myopia is among the most common causes of vision impairment, and it is mainly characterized by abnormal elongation of the axial length, leading to pathologic changes in the ocular structures. Owing to the close relationship between high myopia and glaucoma, the association between intraocular pressure (IOP) and high myopia progression has garnered attention. However, whether lowering IOP can retard the progression of high myopia is unclear. On reviewing previous studies, we suggest that lowering IOP plays a role in progressive axial length elongation in high myopia, particularly in pathologic myopia, wherein the sclera is more remodeled. Based on the responses of the ocular layers, we further proposed the potential mechanisms. For the sclera, lowering the IOP could inhibit the activation of scleral fibroblasts and then reduce scleral remodeling, and a decrease in the scleral distending force would retard the ocular expansion like a balloon. For the choroid, lowering IOP results in an increase in choroidal blood perfusion, thereby reducing scleral hypoxia and slowing down scleral remodeling. The final effect of these pathways is slowing axial elongation and the development of scleral staphyloma. Further animal and clinical studies regarding high myopia with varied degree of IOP and the changes of choroid and sclera during IOP fluctuation in high myopia are needed to verify the role of IOP in the pathogenesis and progression of high myopia. It is hoped that this may lead to the development of a prospective treatment option to prevent and control high myopia progression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Axial Length, Eye / physiopathology
  • Choroid / physiology
  • Disease Progression
  • Humans
  • Intraocular Pressure / physiology*
  • Myopia, Degenerative / physiopathology
  • Myopia, Degenerative / prevention & control*
  • Prospective Studies
  • Sclera / physiology
  • Tonometry, Ocular