Mathematical assessment of constant and time-dependent control measures on the dynamics of the novel coronavirus: An application of optimal control theory

Results Phys. 2021 Dec:31:104971. doi: 10.1016/j.rinp.2021.104971. Epub 2021 Nov 12.

Abstract

The coronavirus infectious disease (COVID-19) is a novel respiratory disease reported in 2019 in China. The COVID-19 is one of the deadliest pandemics in history due to its high mortality rate in a short period. Many approaches have been adopted for disease minimization and eradication. In this paper, we studied the impact of various constant and time-dependent variable control measures coupled with vaccination on the dynamics of COVID-19. The optimal control theory is used to optimize the model and set an effective control intervention for the infection. Initially, we formulate the mathematical epidemic model for the COVID-19 without variable controls. The model basic mathematical assessment is presented. The nonlinear least-square procedure is utilized to parameterize the model from actual cases reported in Pakistan. A well-known technique based on statistical tools known as the Latin-hypercube sampling approach (LHS) coupled with the partial rank correlation coefficient (PRCC) is applied to present the model global sensitivity analysis. Based on global sensitivity analysis, the COVID-19 vaccine model is reformulated to obtain a control problem by introducing three time dependent control variables for isolation, vaccine efficacy and treatment enhancement represented by u 1 ( t ) , u 2 ( t ) and u 3 ( t ) , respectively. The necessary optimality conditions of the control problem are derived via the optimal control theory. Finally, the simulation results are depicted with and without variable controls using the well-known Runge-Kutta numerical scheme. The simulation results revealed that time-dependent control measures play a vital role in disease eradication.

Keywords: COVID-19; Data fitting; Global sensitivity analysis; Optimal control theory.