A transcriptional signature detects homologous recombination deficiency in pancreatic cancer at the individual level

Mol Ther Nucleic Acids. 2021 Oct 20:26:1014-1026. doi: 10.1016/j.omtn.2021.10.014. eCollection 2021 Dec 3.

Abstract

Pancreatic cancer (PC) with homologous recombination deficiency (HRD) has been reported to benefit from poly ADP-ribose polymerase (PARP) inhibitors. However, accurate identification of HRD status for PC patients from the transcriptional level is still a great challenge. Here, based on a relative expression ordering (REO)-based algorithm, we developed an HRD signature including 24 gene pairs (24-GPS) using PC transcriptional profiles from The Cancer Genome Atlas (TCGA). HRD samples classified by 24-GPS showed worse overall survival (p = 4.4E-3 for TCGA; p = 1.2E-3 for International Cancer Genome Consortium-Australia cohort; p = 6.4E-2 for GSE17891; p = 7.5E-2 for GSE57495) and higher HRD scores than non-HRD samples (p = 1.4E-4). HRD samples showed highly unstable genomic characteristics and also displayed HRD-related alterations at the epigenomic and proteomic levels. Moreover, HRD cell lines identified by 24-GPS tended to be sensitive to PARP inhibitors (p = 6.6E-2 for olaparib; p = 2.6E-3 for niraparib). Compared with the non-HRD group, the HRD group presented lower immune scores and CD4/CD8 T cell infiltration proportion. Interestingly, PC tumor cells with co-inhibition of PARP-related genes and ATR showed reduced survival ability. In conclusion, 24-GPS can robustly identify PC patients with HRD status at the individualized level.

Keywords: PARP inhibitor; homologous recombination deficiency; pancreatic cancer; transcriptional signature.