Insight into variations of DOM fractions in different latitudinal rural black-odor waterbodies of eastern China using fluorescence spectroscopy coupled with structure equation model

Sci Total Environ. 2022 Apr 10:816:151531. doi: 10.1016/j.scitotenv.2021.151531. Epub 2021 Nov 13.

Abstract

The structural compositions of dissolved organic matter (DOM) could profoundly affect formation and evolution of black-odor waterbodies (BOWs). In this study, 81 samples of BOWs were collected from three different latitudinal rural regions in eastern China, including low, middle and high latitude regions. Based on fluorescence index (FI) and biological index (BIX) deduced from excitation-emission matrices (EEMs) of rural BOWs, biological source of DOM was dominant in low latitude, while DOM derived from both biological and terrestrial in mid-latitude and high-latitude. Furthermore, humification degree of DOM in the former was lower than those in the latter based on humification index (HIX) deduced from EEMs. Seven fluorescence components of DOM were extracted by EEMs combined with parallel factor analysis: components 1 and 2 (C1 and C2) known as tryptophan-like substances, C3 and C4 associated with tyrosine-like, C5 related with biological byproducts, C6 relative to fulvic-like, and C7 referred as humic-like. The roughly decreasing order of percentages in DOM fractions from the rural BOWs was tyrosine-like > tryptophan-like > fulvic-like > microbial byproduct > humic-like in three regions. According to hierarchical cluster analysis and redundancy analysis, the autochthonous fresh DOM was dominant in low latitudinal rural BOWs, which was relative to actions of phytoplankton and microorganisms. However, humification degree of DOM increased with a rise in latitude, which could attribute to variations of climate and agriculture industrial structure. Based on structure equation model, the C5 and FI were the potential factors of the rural BOWs, which suggested that microbial activity and pollution sources should affect formation and evolution of rural BOWs. These findings are conductive to reveal composition and fluorescence properties of DOM and in recognizing the potential factors of forming mechanism in rural BOWs, which could provide basic theoretical support for policymakers to regulate and treat it.

Keywords: Dissolved organic matter; Fluorescence spectroscopy; Parallel factor analysis; Rural black-odor water; Structural equation model.

MeSH terms

  • China
  • Dissolved Organic Matter
  • Factor Analysis, Statistical
  • Humic Substances* / analysis
  • Odorants
  • Spectrometry, Fluorescence

Substances

  • Dissolved Organic Matter
  • Humic Substances