One-Pot Surface Modification of β-Cu2O NPs for Biocatalytic Performance against A-549 Lung Carcinoma Cell Lines through Docking Analysis

ACS Omega. 2021 Oct 26;6(44):29380-29393. doi: 10.1021/acsomega.1c02942. eCollection 2021 Nov 9.

Abstract

The physicochemical approaches and biological principles in bio-nanotechnology favor specially functionalized nanosized particles. Cuprous oxide nanoparticles (β-Cu2O NPs) of cuprite phase with a little tenorite (CuO) may be very effective in the development of novel therapeutic approaches against several fatalities including A-549 lung carcinoma cell lines. Consequently, the synthesis of β-Cu2O NPs for the improvement in the therapeutic index and drug delivery application is becoming an effective strategy in conventional anticarcinoma treatment. Hence, surface-enhanced nanosized spherical cuprous oxide nanoparticles (β-Cu2O NPs) of cuprite phase were successfully prepared using poly(ethylene glycol) (PEG) as an amphiphilic nonionic surfactant and l-ascorbic acid (K3[Cu(Cl5)]@LAA-PEG) reduced to cuprites β-Cu2O NPs via the sonochemical route. Less improved toxicity and better solubility of β-Cu2O NPs compared with Axitinib were a major reason for producing β-Cu2O NPs from K3[Cu(Cl5)]@LAA-PEG (LAA, l-ascorbic acid, PEG, poly(ethylene glycol) (PEG)). These nanoparticle syntheses have been suggested to influence their cytotoxicity, free-radical scavenging analysis, and reactive oxygen species (ROS) using poly(ethylene glycol) (PEG) and l-ascorbic acid (LAA) as coated and grafted materials due to their dose-dependent nature and IC50 calculations. The surface morphology of the formed β-Cu2O NPs has been examined via UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy diffraction scattering spectroscopy (SEM@EDS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) analysis. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) surface analysis results confirm the presence of pure cuprite with a very little amount of tenorite (CuO) phase, Dynamic light scattering (DLS) confirms the negative ζ-value with stable nature. Docking was performed using PDB of lung carcinomas and others, as rigid receptors, whereas the β-Cu2O NP cluster was treated as a flexible ligand.

Publication types

  • Retracted Publication