New and Recovered Temporary Anchorage Devices, In Vitro Assessment of Structural and Surface Properties

Materials (Basel). 2021 Oct 21;14(21):6271. doi: 10.3390/ma14216271.

Abstract

The orthodontic miniscrew (TADs) is a device that is fixed into bone in the short term for the purpose of enhancing orthodontic anchorage. The aim of our study was to investigate the structural and surface properties of recovered TADs after orthodontic treatment, and compare them to new TADs. TADs (n = 15) from the same manufacturer (Absoanchor; Dentos, Daegu, Korea) were assessed; n = 10 were recovered from patients after orthodontic treatment and n = 5 were new. We performed electrochemical investigations, scanning electron microscopy (SEM) and microbiological analysis. Qualitative analysis on general electrochemical polarization revealed that the TADs retrieved from the patients provided much lower current densities in the passivity zone, and the oxidative processes taking place on their surface were of lower intensity. The surface morphologies of the tips of the retrieved mini-implants showed less sharp tips and smooth surfaces. Defects in the form of pores or cracks could be identified in both evaluated TAD groups. All retrieved TADs showed signs of biological materials (SEM analysis) and contamination on their surfaces. In conclusion, these results can assist orthodontists in comprehending the complexities of TAD behavior with respect to their design and structure.

Keywords: SEM; orthodontic miniscrew; surface morphology; surface treatment; titanium alloy.