In Search of the Perfect Triple BB Bond: Mechanical Tuning of the Host Molecular Trap for the Triple Bond B≡B Fragment

Molecules. 2021 Oct 25;26(21):6428. doi: 10.3390/molecules26216428.

Abstract

The coordination of the B2 fragment by two σ-donor ligands L: could lead to a diboryne compound with a formal triple bond L:→B≡B←:L. σ-Type coordination L:→B leads to an excess of electrons around the B2 central fragment, whereas π-back-donation from the B≡B moiety to ligand L has a compensation effect. Coordination of the σ-donor and π-acceptor ligand is accompanied by the lowering of the BB bond order. Here, we propose a new approach to obtain the perfect triple BB bond through the incorporation of the BB unit into a rigid molecular capsule. The idea is the replacement of π-back-donation, as the principal stabilization factor in the linear NBBN structure, with the mechanical stabilization of the BB fragment in the inert molecular capsule, thus preserving the perfect B≡B triple bond. Quantum-chemical calculations show that the rigid molecular capsule provided a linear NBBN structure and an unusually short BB bond of 1.36 Å. Quantum-chemical calculations of the proposed diboryne adducts show a perfect triple bond B≡B without π-back-donation from the B2 unit to the host molecule. Two mechanisms were tested for the molecular design of a diboryne adduct with a perfect B≡B triple bond: the elimination of π-back-donation and the construction of a suitable molecular trap for the encapsulation of the B2 unit. The second factor that could lead to the strengthening or stretching of a selected chemical bond is molecular strain produced by the rigid molecular host capsule, as was shown for B≡B and for C≡C triple bonds. Different derivatives of icosane host molecules exhibited variation in BB bond length and the corresponding frequency of the BB stretch. On the other hand, this group of molecules shows a perfect triple BB bond character and they all possess a similar level of HOMO.

Keywords: B≡B triple bond; diboryne; host molecule; strain energy; π-back-donation.