Influence of Topography on the Site Selection of a Moon-Based Earth Observation Station

Sensors (Basel). 2021 Oct 29;21(21):7198. doi: 10.3390/s21217198.

Abstract

The Moon provides a long-term, stable, and unique location for Earth observation. Several space agencies, such as NASA, ESA, and CNSA, have conducted lunar explorations. To build a Moon-based observation station, site selection is the first step. The time coverage of Earth observation, e.g., the whole Earth disc observation or Earth-related plasmasphere and magnetosphere, the duration of sunlight coverage, and topography (i.e., slope) are the three major factors influencing site selection, especially in the Moon's south pole region. In this study, we used the Chang'E digital elevation model (DEM) together with Earth, Moon, and Sun positions deduced from JPL ephemeris for site selection. Two craters, Faustini and Shoemaker, were chosen for the fuzzy evaluation of these three factors based on a multiple-input single-output (MISO) model during a 19-year period. The results show that the edge regions of craters and small hills, potholes, or uplifts inside craters are unsuitable for a Moon-based observation station. The south pole area, including these two craters, has relatively low time coverage of sunlight and some unevenly distributed, permanent shadow areas. This indicates a low thermal environment for radiation protection, whereas the relatively flat topography and the ability to cover a field of view several times the Earth's radius enable observations of the plasmasphere and magnetosphere.

Keywords: Earth observation; Moon-based observation station; fuzzy evaluation; sun light.