Spatiotemporal Variation in Rainfall Erosivity and Correlation with the ENSO on the Tibetan Plateau since 1971

Int J Environ Res Public Health. 2021 Oct 21;18(21):11054. doi: 10.3390/ijerph182111054.

Abstract

Soil erosion is a serious ecological problem in the fragile ecological environment of the Tibetan Plateau (TP). Rainfall erosivity is one of the most important factors controlling soil erosion and is associated with the El Niño southern oscillation (ENSO). However, there is a lack of studies related to the spatial distribution and temporal trends of rainfall erosivity on the TP as a whole. Additionally, the understanding of the general influence of ENSO on rainfall erosivity across the TP remains to be developed. In this study, long-term (1971-2020) daily precipitation data from 91 meteorological stations were selected to calculate rainfall erosivity. The analysis combines co-kriging interpolation, Sen's slope estimator, and the Mann-Kendall trend test to investigate the spatiotemporal patten of rainfall erosivity across the TP. The Oceanic Niño Index (ONI) and multivariate ENSO Index (MEI) were chosen as ENSO phenomenon characterization indices, and the relationship between ENSO and rainfall erosivity was explored by employing a continuous wavelet transform. The results showed that an increasing trend in annual rainfall erosivity was detected on the TP from 1971 to 2020. The seasonal and monthly rainfall erosivity was highly uneven, with the summer erosivity accounting for 60.36%. The heterogeneous spatial distribution of rainfall erosivity was observed with an increasing trend from southeast to northwest. At the regional level, rainfall erosivity in the southeastern TP was mainly featured by a slow increase, while in the northwest was more destabilizing and mostly showed no significant trend. The rainfall erosivity on the whole TP was relatively high during non-ENSO periods and relatively low during El Niño/La Niña periods. It is worth noting that rainfall erosivity in the northwest TP appears to be more serious during the La Niña event. Furthermore, there were obvious resonance cycles between the rainfall erosivity and ENSO in different regions of the plateau, but the cycles had pronounced discrepancies in the occurrence time, direction of action and intensity. These findings contribute to providing references for soil erosion control on the TP and the formulation of future soil conservation strategies.

Keywords: ENSO; Tibetan Plateau; rainfall erosivity; soil erosion; spatiotemporal variation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • El Nino-Southern Oscillation*
  • Seasons
  • Soil*
  • Spatial Analysis
  • Tibet

Substances

  • Soil