Engineering Multidefects on Cex Si1- x O2- δ Nanocomposites for the Catalytic Ozonation Reaction

Small. 2022 Jan;18(4):e2103530. doi: 10.1002/smll.202103530. Epub 2021 Nov 11.

Abstract

Herein, it is shown that by engineering defects on Cex Si1- x O2- δ nanocomposites synthesized via flame spray pyrolysis, oxygen vacancies can be created with an increased density of trapped electrons, enhancing the formation of reactive oxygen species (ROSs) and hydroxyl radicals in an ozone-filled environment. Spectroscopic analysis and density functional theory calculations indicate that two-electron oxygen vacancies (OV 0 ) or peroxide species, and their degree of clustering, play a critical role in forming reactive radicals. It is also found that a higher Si content in the binary oxide imposes a high OV 0 ratio and, consequently, higher catalytic activity. Si inclusion in the nanocomposite appears to stabilize the surface oxygen vacancies as well as increase the reactive electron density at these sites. A mechanistic study on effective ROSs generated during catalytic ozonation reveals that the hydroxyl radical is the most effective ROS for organic degradation and is formed primarily through H2 O2 generation in the presence of the OV 0 . Examining the binary oxides offers insights on the contribution of oxygen vacancies and their state of charge to catalytic reactions, in this instance for the catalytic ozonation of organic compounds.

Keywords: Ce xSi 1− xO 2− δ; catalytic ozonation; defect; electron transfer; oxygen vacancy.