Development of Viroreaper sanitization chamber for COVID 19

Sens Int. 2020:1:100052. doi: 10.1016/j.sintl.2020.100052. Epub 2020 Oct 28.

Abstract

The whole world at present is dealing with the COVID 19 pandemic. As per studies worldwide SARS-CoV-2 by sequencing analysis is 95% homogenous similar to the bat coronavirus and almost 70% similar to the SARS-CoV-1. SARS CoV 2 is a respiratory problem which in its worst form of disease causes ARDS and hampers the patient's ability to breathe on his own and has to be put on Ventilator. As per WHO (World Health Organization) guidelines, sanitization is an effective way of prevention from the infection. The proper sanitization being not feasible and time consuming in certain cases, faster and effective alternatives of sanitization processes are necessary. As per recently published study by researchers in Beijing, China, it was observed that with each degree rise in temperature and percent humidity, the contagiousness of the disease caused by the Coronavirus, named COVID 19 goes down significantly. R-naught or RO can be referred as the average number of people that gets infected from one sick person among a population which is not immune to the virus. The closer to zero an RO value the better the results indicating less spread of the disease. A lower RO means the outbreak is slowing or declining while a higher one means its swelling or growing at faster rate. The RO of the coronavirus hovers between 2 and 2.5 as per World Health Organization or WHO meaning that each new person spreads the disease to about 2.2 people on an average. The chamber being developed is aimed at lowering the Ro value so that the infection rate slows down. RO is not a fixed value, it changes depending on various factors such as proximity among people, the environmental surroundings and climatic conditions. The higher temperatures (38 °C) at 80-90% relative humidity decreases the virus activity within 24 h. Moreover, in a condition where the virus that was dried was stored at higher temperature (>38 °C) and high relative humidity (>95%), there was observed an additional degradation in virus activity at each point in time. Taking into consideration the above research, we developed a COVID De-Incubator chamber to disinfect the clothes and commonly used daily wear items. Our results were exciting as the disinfection proved to be effective at temperatures of 75 °C-80 °C and humidity levels at 80%-90%. Moreover, the chamber was developed at significantly lower costs. In this study, an attempt has been made to fabricate a chamber with temperature and humidity-controlled environment to disinfect daily used material. Using fins and momentum source, a homogenous environment is created inside the chamber for better results, with the help of numerical simulation to decide the optimum angle for the inclination of fins and location of the momentum source.