Potential Phenotyping Methodologies to Assess Inter- and Intravarietal Variability and to Select Grapevine Genotypes Tolerant to Abiotic Stress

Front Plant Sci. 2021 Oct 26:12:718202. doi: 10.3389/fpls.2021.718202. eCollection 2021.

Abstract

Plant phenotyping is an emerging science that combines multiple methodologies and protocols to measure plant traits (e.g., growth, morphology, architecture, function, and composition) at multiple scales of organization. Manual phenotyping remains as a major bottleneck to the advance of plant and crop breeding. Such constraint fostered the development of high throughput plant phenotyping (HTPP), which is largely based on imaging approaches and automatized data retrieval and processing. Field phenotyping still poses major challenges and the progress of HTPP for field conditions can be relevant to support selection and breeding of grapevine. The aim of this review is to discuss potential and current methods to improve field phenotyping of grapevine to support characterization of inter- and intravarietal diversity. Vitis vinifera has a large genetic diversity that needs characterization, and the availability of methods to support selection of plant material (polyclonal or clonal) able to withstand abiotic stress is paramount. Besides being time consuming, complex and expensive, field experiments are also affected by heterogeneous and uncontrolled climate and soil conditions, mostly due to the large areas of the trials and to the high number of traits to be observed in a number of individuals ranging from hundreds to thousands. Therefore, adequate field experimental design and data gathering methodologies are crucial to obtain reliable data. Some of the major challenges posed to grapevine selection programs for tolerance to water and heat stress are described herein. Useful traits for selection and related field phenotyping methodologies are described and their adequacy for large scale screening is discussed.

Keywords: Vitis vinifera; heat and water stress; imaging; phenotyping planning; planting material; selection traits.

Publication types

  • Review