Borneol enhances the protective effect against cerebral ischemia/reperfusion injury by promoting the access of astragaloside IV and the components of Panax notoginseng saponins into the brain

Phytomedicine. 2022 Jan:94:153822. doi: 10.1016/j.phymed.2021.153822. Epub 2021 Oct 24.

Abstract

Background: Astragalus and Panax notoginseng are significant traditional Chinese medicines for treating ischemic stroke, with astragaloside IV (AST IV) and Panax notoginseng saponins (PNS) being the major effective compounds, respectively. These compounds can also be used in combination. We have previously shown that AST IV and PNS have an antagonistic effect on cerebral ischemia/reperfusion (I/R) injury, and the combination of these two drugs can elevate this effect; unfortunately, AST IV and PNS cannot easily enter the brain tissues through the blood brain barrier (BBB). Previous studies have confirmed that the combination of borneol with other agents could promote the penetration of the drug components through the BBB. However, it remains unclear whether borneol can promote entry of the active components of AST IV and PNS into the brain tissues and enhance their effect against cerebral ischemia.

Objective: This study aimed to investigate the effects of a combination of borneol with AST IV and PNS against I/R injury and explore the mechanisms of borneol-promoting penetration of drug components into the BBB based on the drug transport of brain tissues.

Methods: A rat model of focal cerebral I/R injury was established, and drugs, including borneol, AST IV, and PNS, as well as their combinations were intragastrically administered. Subsequently, drug efficacy was assessed, and the condition of AST IV and PNS active components (Rg1, Rb1, R1) delivered into the brain was analyzed. Moreover, BBB permeability was determined, and the expression of related drug transporters and their genes were evaluated.

Results: After treatment with borneol, AST IV, PNS, AST Ⅳ+PNS, and borneol+AST Ⅳ+PNS after cerebral I/R, the neurological function deficit scores, cerebral infarct rate, and brain water content markedly decreased. The effects of the three-drug-combination were better than those of the drugs used alone and those of AST Ⅳ+PNS. Moreover, after I/R in rats, AST IV and the components of PNS (Rg1, Rb1, R1) were mainly found in the cerebral cortex and in the cerebellum, respectively, when used alone. Borneol combined with AST IV and PNS increased the contents of AST IV, Rb1, Rg1, and R1 in the cerebral cortex and in the cerebellum, thus, promoting the enrichment of active components to the cerebral cortex, especially to the affected side. In addition, following I/R, diffuse distribution of lanthanum particles in the basement membrane, intercellular and intracellular locations of rat brain tissues indicated BBB destruction and increase in permeability, which were alleviated in each drug group. The effects of borneol combined with AST IV and PNS were stronger than those of the drug single-used and those of the AST IV+PNS group. Finally, the expression of effluent transporters (ET) and their genes, including P-glycoprotein (P-gp), multidrug resistance protein (MRP)-1, MRP-2, MRP-4, and MRP-5 in brain tissues, strikingly increased after I/R. Borneol remarkedly down-regulated the protein expression of P-gp, MRP-2, and MRP-4 in the brain, whereas PNS down-regulated MRP-4 and MRP-5 protein expression. AST IV, AST IV+PNS, and bornoel+AST IV+PNS effectively decreased the expression of P-gp, MRP-2, MRP-4, and MRP-5 proteins. The effects of the three-drug combination were significantly greater than those of the drug single-used and AST IV+PNS groups. The expression of each ET gene manifested corresponding results. Meanwhile, PNS, AST IV+PNS, and bornoel+AST IV+PNS significantly inhibited the down-regulation of the uptake transporter organic anion transporting polypeptide (OATP)-2 expression, and the effect of bornoel+AST IV+PNS was stronger than that of other groups.

Conclusion: After I/R, the brain tissues were injured, BBB permeability increased, expression of critical ET and their genes were markedly up-regulated, and the main uptake transporters were down-regulated. We propose that the combination of borneol, AST IV and PNS could enhance the effect against cerebral I/R injury and protect BBB integrity. The potential mechanism might be the delivery of AST IV and active components of PNS to the brain tissues after treatment in combination with borneol, which could be effectively promoted by down-regulating the expression of ETs and up-regulating the expression of uptake transporters in the brain tissues. This study was the first to demonstrate that borneol combined with AST IV+PNS enhanced the effect against cerebral I/R injury through promoting the entry of AST and PNS active components to the brain tissues. Thus, this study proposes an instructive role in developing effective active ingredients combination of Chinese medicine with clear ingredients and synergistic effects in terms of the characteristic of borneol.

Keywords: Astragaloside IV; Blood brain barrier; Borneol; Cerebral ischemia/reperfusion injury; Panax notoginseng saponins; Transporter.

Publication types

  • Retracted Publication

MeSH terms

  • Animals
  • Brain
  • Brain Ischemia* / drug therapy
  • Camphanes
  • Panax notoginseng*
  • Rats
  • Reperfusion Injury* / drug therapy
  • Saponins* / pharmacology
  • Triterpenes

Substances

  • Camphanes
  • Saponins
  • Triterpenes
  • astragaloside A
  • isoborneol