Near-Surface Gas-Phase Methoxymethanol Is Generated by Methanol Oxidation over Pd-Based Catalysts

J Phys Chem Lett. 2021 Nov 25;12(46):11252-11258. doi: 10.1021/acs.jpclett.1c03381. Epub 2021 Nov 11.

Abstract

Catalytic conversion of alcohols underlies many commodity and fine chemical syntheses, but a complete mechanistic understanding is lacking. We examined catalytic oxidative conversion of methanol near atmospheric pressure using operando small-aperture molecular beam time-of-flight mass spectrometry, interrogating the gas phase 500 μm above Pd-based catalyst surfaces. In addition to a variety of stable C1-3 species, we detected methoxymethanol (CH3OCH2OH)─a rarely observed and reactive C2 oxygenate that has been proposed to be a critical intermediate in methyl formate production. Methoxymethanol is observed above Pd, AuxPdy alloys, and oxide-supported Pd (common methanol oxidation catalysts). Experiments establish temperature and reactant feed ratio dependences of methoxymethanol generation, and calculations using density functional theory are used to examine the energetics of its likely formation pathway. These results suggest that future development of catalysts and microkinetic models for methanol oxidation should be augmented and constrained to accommodate the formation, desorption, adsorption, and surface reactions involving methoxymethanol.