Postexercise urinary alpha-1 acid glycoprotein is not dependent on hypoxia

J Appl Physiol (1985). 2022 Jan 1;132(1):261-269. doi: 10.1152/japplphysiol.00476.2021. Epub 2021 Nov 11.

Abstract

Proteinuria is a transient physiological phenomenon that occurs with a range of physical activities and during ascent to altitude. Exercise intensity appears to dictate the magnitude of postexercise proteinuria; however, evidence also indicates the possible contributions from exercise-induced hypoxemia or reoxygenation. Using an environmental hypoxic chamber, this crossover-designed study aimed to evaluate urinary alpha-1 acid glycoprotein (α1-AGP) excretion pre/postexercise performed in hypoxia (HYP) and normoxia (NOR). Sixteen individuals underwent experimental sessions in normoxia (NOR, 20.9% O2) and hypoxia (HYP, 12.0% O2). Sessions began with a 2-h priming period before completing a graded maximal exercise test (GXT) on a cycle ergometer, which was followed by continuation of exposure for an additional 2 h. Physiological responses (i.e., blood pressure, heart rate, and peripheral oxygenation), Lake Louise Scores (LLSs), and urine specimens (analyzed for albumin and α1-AGP) were collected pre- and postexercise (after 30, 60, and 120 min). Peak power output was significantly reduced in HYP (193 ± 45 W) compared with NOR (249 ± 59 W, P < 0.01). Postexercise urinary α1-AGP was greater in NOR (20.04 ± 14.84 µg·min-1) than in HYP (15.08 ± 13.46 µg·min-1), albeit the difference was not significant (P > 0.05). Changes in urinary α1-AGP from pre- to post-30 min were not related to physiological responses or performance outcomes observed during GXT in NOR or HYP. Despite profound systemic hypoxemia with maximal exercise in hypoxia, postexercise α1-AGP excretion was not elevated above the levels observed following normoxic exercise.NEW & NOTEWORTHY By superimposing hypoxic exposure and maximal exercise, we were able to investigate the impact of hypoxia on postexercise proteinuria. Urinalysis for α1-AGP (via particle-enhanced immunoturbidimetry) in specimens collected pre-/postexercise enabled the sensitive detection of altered glomerular permeability. Data indicated that exercise intensity, rather than the degree of exercise-induced hypoxemia, determines postexercise proteinuria.

Keywords: alpha-1 acid glycoprotein; exercise; hypoxia; orosomucoid; proteinuria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Altitude
  • Exercise
  • Exercise Test
  • Humans
  • Hypoxia*
  • Orosomucoid*

Substances

  • Orosomucoid

Associated data

  • figshare/10.6084/m9.figshare.14870136
  • figshare/10.6084/m9.figshare.14870154