PbI2-TiO2 Bulk Heterojunctions with Long-Range Ordering for X-ray Detectors

J Phys Chem Lett. 2021 Nov 18;12(45):11176-11181. doi: 10.1021/acs.jpclett.1c03297. Epub 2021 Nov 11.

Abstract

High-performance X-ray detectors are usually based on single crystals, due to the long-range ordering and hence outstanding electronic properties. On the other hand, bulk heterojunctions (BHJs) that can effectively enhance photogenerated exciton dissociation are widely used for photodetectors. The benefits of both spur investigation into how to combine these two strategies to enhance X-ray detection. Here, TiO2 networks are incorporated into PbI2 crystals to form interpenetrating type II heterojunctions, namely BHJs. These BHJs exhibit long-range ordering in molecular packing similar to that of single crystals. Compared with single crystals, the long-range ordered BHJs facilitate the separation of photogenerated electrons and holes to inhibit recombination, extend the mobility lifetime product by 6.4 times, and consequently improve X-ray sensitivity by 5.8 times. Hence, this work provides a new strategy using gel-grown crystals to fabricate high-performance X-ray detectors as well as a new platform for studying the behavior of X-ray-generated carriers in BHJs with long-range ordering.