Neuromodulatory Effects of HD-tACS/tDCS on the Prefrontal Cortex: A Resting-State fNIRS-EEG Study

IEEE J Biomed Health Inform. 2022 May;26(5):2192-2203. doi: 10.1109/JBHI.2021.3127080. Epub 2022 May 5.

Abstract

Transcranial direct and alternating current stimulation (tDCS and tACS, respectively) can modulate human brain dynamics and cognition. However, these modalities have not been compared using multiple imaging techniques concurrently. In this study, 15 participants participated in an experiment involving two sessions with a gap of 10 days. In the first and second sessions, tACS and tDCS were administered to the participants. The anode for tDCS was positioned at point FpZ, and four cathodes were positioned over the left and right prefrontal cortices (PFCs) to target the frontal regions simultaneously. tDCS was administered with 1 mA current. tACS was supplied with a current of 1 mA (zero-to-peak value) at 10 Hz frequency. Stimulation was applied concomitantly with functional near-infrared spectroscopy and electroencephalography acquisitions in the resting-state. The statistical test showed significant alteration (p < 0.001) in the mean hemodynamic responses during and after tDCS and tACS periods. Between-group comparison revealed a significantly less (p < 0.001) change in the mean hemodynamic response caused by tACS compared with tDCS. As hypothesized, we successfully increased the hemodynamics in both left and right PFCs using tDCS and tACS. Moreover, a significant increase in alpha-band power (p < 0.01) and low beta band power (p < 0.05) due to tACS was observed after the stimulation period. Although tDCS is not frequency-specific, it increased but not significantly (p > 0.05) the powers of most bands including delta, theta, alpha, low beta, high beta, and gamma. These findings suggest that both hemispheres can be targeted and that both tACS and tDCS are equally effective in high-definition configurations, which may be of clinical relevance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain / physiology
  • Cognition
  • Electroencephalography / methods
  • Humans
  • Nervous System Diseases*
  • Prefrontal Cortex / diagnostic imaging
  • Prefrontal Cortex / physiology
  • Transcranial Direct Current Stimulation* / methods