The Osteocyte Transcriptome: Discovering Messages Buried Within Bone

Curr Osteoporos Rep. 2021 Dec;19(6):604-615. doi: 10.1007/s11914-021-00708-5. Epub 2021 Nov 10.

Abstract

Purpose of the review: Osteocytes are cells embedded within the bone matrix, but their function and specific patterns of gene expression remain only partially defined; this is beginning to change with recent studies using transcriptomics. This unbiased approach can generate large amounts of data and is now being used to identify novel genes and signalling pathways within osteocytes both at baseline conditions and in response to stimuli. This review outlines the methods used to isolate cell populations containing osteocytes, and key recent transcriptomic studies that used osteocyte-containing preparations from bone tissue.

Recent findings: Three common methods are used to prepare samples to examine osteocyte gene expression: digestion followed by sorting, laser capture microscopy, and the isolation of cortical bone shafts. All these methods present challenges in interpreting the data generated. Genes previously not known to be expressed by osteocytes have been identified and variations in osteocyte gene expression have been reported with age, sex, anatomical location, mechanical loading, and defects in bone strength. A substantial proportion of newly identified transcripts in osteocytes remain functionally undefined but several have been cross-referenced with functional data. Future work and improved methods (e.g. scRNAseq) likely provide useful resources for the study of osteocytes and important new information on the identity and functions of this unique cell type within the skeleton.

Keywords: Bone; Gene expression; Osteocyte; RNAseq; Transcriptome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Bone and Bones / cytology*
  • Bone and Bones / metabolism*
  • Cell Culture Techniques / methods*
  • Gene Expression*
  • Humans
  • Osteocytes / cytology*
  • Osteocytes / metabolism*
  • Transcriptome