In situ gel implant for postsurgical wound management and extended chemoimmunotherapy against breast cancer recurrence

Acta Biomater. 2022 Jan 15:138:168-181. doi: 10.1016/j.actbio.2021.10.039. Epub 2021 Oct 28.

Abstract

Postsurgical recurrence of breast cancer is closely related to the inflammatory tumor microenvironment evoked by surgical wounds. Toll-like receptor 4 (TLR4) signaling contributes to NF-κB activation thus secreting various inflammatory cytokines. Herein, we developed an in situ photo-crosslinked hydrogel (D/T gel) concurrently loaded with doxorubicin (DOX) and a TLR4 antagonist, resatorvid (TAK-242). Its therapeutic effect against breast cancer postsurgical relapse was accomplished through remodeling the proinflammatory tumor microenvironment. The obtained gel network exhibited ideal biodegradability and biocompatibility, which motivated dermal wound healing in the full thickness wound model in mice. Despite the initial burst release of DOX, D/T gels exhibited extended-release of both DOX and TAK-242 for up to 21 days in vitro. TAK-242 was demonstrated to inhibit the lipopolysaccharide-induced NF-κB activation and downregulate TLR4 levels in both RAW264.7 and 4T1 cells. In a 4T1-Luc tumor postsurgical recurrence model, D/T gel significantly suppressed recurrent tumor growth by elevating the concentrations of DOX and TAK-242 at the tumor sites and remodeling the TLR4 activation-induced proinflammatory microenvironment. Overall, the D/T gel platform technology is proven to deliver therapeutics directly to the surgical wound bed, attenuating the dual inflammatory responses induced by DOX and surgical wounding thus greatly potentiating its efficacy in preventing postsurgical tumor recurrence. STATEMENT OF SIGNIFICANCE: Postsurgical recurrence of breast cancer is closely related to the inflammatory tumor microenvironment (TME) evoked by surgical wounds. Although chemotherapeutics lead to extensive residual tumor cell necrosis, multiple inflammatory cytokines are secreted simultaneously, which are conducive to tumor recurrence. In this work, a TLR4 antagonist, TAK-242, was combined with DOX to reverse the dual inflammatory TME induced by surgical wounding and chemotherapy. To elevate the concentration of therapeutics at the tumor site, a photocrosslinked hydrogel (D/T gel) implant coloaded with TAK-242 and DOX was developed and applied on the postsurgical bed. Consequently, D/T gel attenuated the dual inflammatory responses and greatly potentiated its efficacy in preventing postsurgical tumor recurrence.

Keywords: Breast cancer; Doxorubicin; Hydrogel; Postsurgical relapse; Resatorvid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms* / drug therapy
  • Doxorubicin / pharmacology
  • Female
  • Gels
  • Humans
  • Immunotherapy
  • Mice
  • Neoplasm Recurrence, Local*
  • Tumor Microenvironment

Substances

  • Gels
  • Doxorubicin