Concentration, optical characteristics, and emission factors of brown carbon emitted by on-road vehicles

Sci Total Environ. 2022 Mar 1:810:151307. doi: 10.1016/j.scitotenv.2021.151307. Epub 2021 Nov 5.

Abstract

Atmospheric brown carbon (BrC) is a light-absorbing component that affects radiative forcing; however, this effect requires further clarification, particularly with respect to BrC emission sources, chromophores, and optical properties. In the present study, the concentrations, optical properties, and emission factors of organic carbon (OC), water-soluble OC (WSOC), and humic-like substances (HULIS) in fine particulate matter (PM2.5) emitted from vehicles in three road tunnels (the Wucun, Xianyue, and Wenxing tunnels in Xiamen, China) were investigated. The mass concentrations and light absorption of OC, WSOC, and HULIS were higher at the exits of each tunnel than at entrances, demonstrating that vehicle emissions were a BrC source. At each tunnel's exit, the average light absorption contributed by HULIS-BrC to water-soluble BrC (WS-BrC) and total BrC at 365 nm was higher than the corresponding carbon mass concentration contributed by HULIS (HULIS-C) to WSOC and OC, indicating that the chromophores of HULIS emitted from vehicles had a disproportionately high effect on the light absorption characteristics of BrC. The emission factors (EFs) of HULIS-C and WSOC mass concentrations were highest at the Xianyue tunnel; however, the EFs of HULIS-BrC and WS-BrC light absorption were highest at the Wenxing tunnel, indicating that the chromophore composition of BrC was different among the tunnels and that the mass concentration EFs did not correspond directly to the light absorption EFs.

Keywords: Brown carbon; Emission factors; Optical properties; Vehicle emissions.

MeSH terms

  • Aerosols / analysis
  • Air Pollutants* / analysis
  • Carbon* / analysis
  • Environmental Monitoring
  • Particulate Matter / analysis

Substances

  • Aerosols
  • Air Pollutants
  • Particulate Matter
  • Carbon