Spectroscopy and Theoretical Modeling of Phonon Vibration Modes and Band Gap Energy of Cu2ZnSn(S x Se1- x )4 Bulk Crystals and Thin Films

ACS Omega. 2021 Oct 21;6(43):29137-29148. doi: 10.1021/acsomega.1c04356. eCollection 2021 Nov 2.

Abstract

Semiconductor Cu2ZnSn(S x Se1-x )4 (CZTSSe) solid solution is considered as a perspective absorber material for solar cells. However, during its synthesis or deposition, any modification in the resulting optical properties is hardly predicted. In this study, experimental and theoretical analyses of CZTSSe bulk crystals and thin films are presented based on Raman scattering and absorption spectroscopies together with compositional and morphological characterizations. CZTSSe bulk and thin films are studied upon a change in the x = S/(S + Se) aspect ratio. The morphological study is focused on surface visualization of the solid solutions, depending on x variation. It has been discovered for the first time that the surface of the bulk CZTSSe crystal with x = 0.35 has pyramid-like structures. The information obtained from the elemental analysis helps to consider the formation of a set of possible intrinsic lattice defects, including vacancies, self-interstitials, antisites, and defect complexes. Due to these results and the experimentally obtained values of the band gap within 1.0-1.37 eV, a deviation from the calculated band gap values is estimated in the range of 1.0-1.5 eV. It is suggested which defects can have an influence on such a band gap change. Also, on comparing the experimental Raman spectra of CZTSSe with the theoretical modeling results, an excellent agreement is obtained for the main Raman bands. The proposed theoretical approach allows to estimate the values of concentration of atoms (S or Se) for CZTSSe solid solution directly from the experimental Raman spectra. Thus, the visualization of morphology and the proposed theoretical approach at various x values will help for a deeper understanding of the CZTSSe structure to develop next-generation solar cells.