Novel Anti-Hepatitis B Virus Activity of Euphorbia schimperi and Its Quercetin and Kaempferol Derivatives

ACS Omega. 2021 Oct 21;6(43):29100-29110. doi: 10.1021/acsomega.1c04320. eCollection 2021 Nov 2.

Abstract

Natural or plant products, because of their structural diversity, are a potential source for identifying new anti-hepatitis B virus (HBV) agents. Here, we report the anti-HBV activity of Euphorbia schimperi and its quercetin (QRC) and kaempferol derivatives. The anti-HBV-active methanol fraction of E. schimperi was subjected to chromatographic techniques, leading to isolation of three flavonols, following their structure determination by 1H and 13C NMR spectroscopies. Their cytotoxicity and anti-HBV potential were assessed using HBV reporter HepG2.2.15 cells, and their modes of action were delineated by molecular docking. The isolated compounds identified as quercetin-3-O-glucuronide (Q3G), quercetin-3-O-rhamnoside (Q3R), and kaempferol-3-O-glucuronide (K3G) were non-cytotoxic to HepG2.2.15 cells. The viral HBsAg/HBeAg production on day 5 was significantly inhibited by K3G (∼70.2/∼73.4%), Q3G (∼67.8/∼72.1%), and Q3R (∼63.2%/∼68.2%) as compared to QRC (∼70.3/∼74.8%) and lamivudine (∼76.5/∼84.5%) used as standards. The observed in vitro anti-HBV potential was strongly supported by in silico analysis, which suggested their structure-based activity via interfering with viral Pol/RT and core proteins. In conclusion, this is the first report on the anti-HBV activity of E. schimperi-derived quercitrin-3-O-glucuronide, quercitrin-3-O-rhamnoside, and kaempferol-3-O-glucuronide, most likely through interfering with HBV proteins.