High-Efficiency Photocatalytic Degradation of Tannic Acid Using TiO2 Heterojunction Catalysts

ACS Omega. 2021 Oct 22;6(43):28538-28547. doi: 10.1021/acsomega.1c02500. eCollection 2021 Nov 2.

Abstract

Photocatalysts have been extensively used for hydrogen evolution or organic degradation. In this work, two different heterojunction types of composite photocatalysts, 1T-MoS2@TiO2 with Schottky heterojunction and 2H-MoS2@TiO2 with type-II heterojunction, are synthesized via hydrothermal synthesis. These two composite materials exhibit excellent photocatalytic activity toward the degradation of tannic acid, which is a typical organic in nuclear wastewater. At an optimal loading of 16% 1T-MoS2, the 1T-MoS2@TiO2 shows the highest degradation capacity of 98%, which is 3.2 times higher than that of pure TiO2. The degradation rate of 16% 1T-MoS2@TiO2 is much higher than that of 13% 2H-MoS2@TiO2. The enhanced photocatalytic activity might be attributed to the improved charge transfer according to the mechanism investigation, supported by the X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS) analyses. This work provides new opportunities for constructing highly efficient catalysts for nuclear waste disposal.