Testing the quasicentroid molecular dynamics method on gas-phase ammonia

J Chem Phys. 2021 Nov 7;155(17):174120. doi: 10.1063/5.0068250.

Abstract

Quasicentroid molecular dynamics (QCMD) is a path-integral method for approximating nuclear quantum effects in dynamics simulations, which has given promising results for gas- and condensed-phase water. In this work, by simulating the infrared spectrum of gas-phase ammonia, we test the feasibility of extending QCMD beyond water. Overall, QCMD works as well for ammonia as for water, reducing or eliminating blue shifts from the classical spectrum without introducing the artificial red shifts or broadening associated with other imaginary-time path-integral methods. However, QCMD gives only a modest improvement over the classical spectrum for the position of the symmetric bend mode, which is highly anharmonic (since it correlates with the inversion pathway). We expect QCMD to have similar problems with large-amplitude degrees of freedom in other molecules but otherwise to work as well as for water.