Multifunctional Hyphae Carbon Powering Lithium-Sulfur Batteries

Adv Mater. 2022 Feb;34(6):e2107415. doi: 10.1002/adma.202107415. Epub 2021 Dec 19.

Abstract

Biotechnology can bring new breakthroughs on design and fabrication of energy materials and devices. In this work, a novel and facile biological self-assembly technology to fabricate multifunctional Rhizopus hyphae carbon fiber (RHCF) and its derivatives on a large scale for electrochemical energy storage is proposed. Crosslinked hollow carbon fibers are successfully prepared by conversion of Rhizopus hyphae, and macroscopic production of centimeter-level carbon balls consisting of hollow RHCFs is further realized. Moreover, the self-assembled RHCF balls show strong adsorption characteristics on metal ions and can be converted into a series of derivatives such as RHCF/metal oxides. Notably, the designed RHCF derivatives are demonstrated with powerful multifunctionability as cathode, anode, and separator for lithium-sulfur batteries (LSBs). The RHCF can act as the host material to combine with metal oxide (CoO) and S, Li metal, and a polypropylene (PP) separator to form a new RHCF/CoO-S cathode, an RHCF/Li anode, and an RHCF/PP separator, respectively. Consequently, the optimized LSB full cell presents excellent cycling performance and superior high-rate capacity (881.3 mA h g-1 at 1 C). This work provides a new method for large-scale preparation of hollow carbon fibers and derivatives for advanced energy storage and conversion.

Keywords: anodes; cathodes; hyphae carbon; lithium-sulfur batteries; separators.