Spatio-temporal changes in chronic wasting disease risk in wild deer during 14 years of surveillance in Alberta, Canada

Prev Vet Med. 2021 Dec:197:105512. doi: 10.1016/j.prevetmed.2021.105512. Epub 2021 Oct 19.

Abstract

Disease risk modeling is a key first step to understand the spatio-temporal dynamics of wildlife disease and to direct cost-effective surveillance and management. In Alberta, active surveillance for chronic wasting disease (CWD) in wild cervids began in 1998 with the first case detected in free-ranging cervids in 2005. Following the detection, a herd reduction program was implemented during 2005-2008 and in 2006 the ongoing hunter-based CWD Surveillance Program became mandatory in high-risk Wildlife Management Units (WMU). We used data collected during the CWD surveillance program to 1) document growth in sex-specific CWD prevalence (proportion of deer in sample that is CWD-positive) in hunter-harvest deer in 6 WMUs consistently monitored from 2006 to 2018, 2) document landscape features associated with where CWD-positive compared to CWD-negative deer were removed during hunter harvest and herd reduction in an early (2005-2012) and in a late period (2013-2017), and 3) to map the spatial risk of harvesting a deer infected with CWD in the prairie parklands of Alberta. In the 6 continuously monitored WMUs, risk of a harvested deer being CWD positive increased from 2006 to 2018 with CWD prevalence remaining highest in male mule deer whereas overall growth rate in CWD prevalence was greater in female mule deer, but similar to male white-tailed deer. We found no evidence that the 3-year herd reduction program conducted immediately after CWD was first detected affected the rate at which CWD grew over the course of the invasion. Risk of deer being CWD-positive was the highest in animals taken near small stream drainages and on soils with low organic carbon content in the early period, whereas risk became highest in areas of agriculture especially when far from large river drainages where deer often concentrate in isolated woody patches. The change in the influence of proximity to known CWD-positive cases suggested the disease was initially patchy but became more spatially homogeneous over time. Our results indicate that a targeted-removal program will remove more CWD positive animals compared to hunter harvest. However, the discontinuation of targeted removals during our research program, restricted our ability to assess its long term impact on CWD prevalence.

Keywords: Chronic wasting disease; Deer; Disease risk; Disease surveillance; Prion; Transmissible spongiform encephalopathy.

MeSH terms

  • Alberta / epidemiology
  • Animals
  • Animals, Wild
  • Deer*
  • Female
  • Male
  • Prevalence
  • Wasting Disease, Chronic* / epidemiology