Resonance-Mediated Dynamic Modulation of Perovskite Crystallization for Efficient and Stable Solar Cells

Adv Mater. 2022 Feb;34(6):e2107111. doi: 10.1002/adma.202107111. Epub 2021 Dec 22.

Abstract

Manipulating perovskite crystallization to prepare high-quality perovskite films is the key to achieving highly efficient and stable perovskite solar cells (PSCs). Here, a dynamic strategy is proposed to modulate perovskite crystallization using a resonance hole-transporting material (HTM) capable of fast self-adaptive tautomerization between multiple electronic states with neutral and charged resonance forms for mediating perovskite crystal growth and defect passivation in situ. This approach, based on resonance variation with self-adaptive molecular interactions between the HTM and the perovskite, produces high-quality perovskite films with smooth surface, oriented crystallization, and low charge recombination, leading to high-performance inverted PSCs with power conversion efficiencies approaching 22% for small-area devices (0.09 cm2 ) and up to 19.5% for large-area devices (1.02 cm2 ). Also, remarkably high stability of the PSCs is observed, retaining over 90%, 88%, or 83% of the initial efficiencies in air with relative humidity of 40-50%, under continuous one-sun illumination, or at 75 °C annealing for 1000 h without encapsulation.

Keywords: crytallization; device stability; passivation; perovskite solar cells; resonance hole-transporting materials.