Cyanophycin Modifications-Widening the Application Potential

Front Bioeng Biotechnol. 2021 Oct 19:9:763804. doi: 10.3389/fbioe.2021.763804. eCollection 2021.

Abstract

A circular bioeconomy approach is essential to slowing down the fearsome ongoing climate change. Replacing polymers derived from fossil fuels with biodegradable biobased polymers is one crucial part of this strategy. Cyanophycin is a polymer consisting of amino acids produced by cyanobacteria with many potential applications. It consists mainly of aspartic acid and arginine, however, its composition may be changed at the production stage depending on the conditions of the polymerization reaction, as well as the characteristics of the enzyme cyanophycin synthetase, which is the key enzyme of catalysis. Cyanophycin synthetases from many sources were expressed heterologously in bacteria, yeast and plants aiming at high yields of the polymer or at introducing different amino acids into the structure. Furthermore, cyanophycin can be modified at the post-production level by chemical and enzymatic methods. In addition, cyanophycin can be combined with other compounds to yield hybrid materials. Although cyanophycin is an attractive polymer for industry, its usage as a sole material remains so far limited. Finding new variants of cyanophycin may bring this polymer closer to real-world applications. This short review summarizes all modifications of cyanophycin and its variants that have been reported within the literature until now, additionally addressing their potential applications.

Keywords: biopolymer; chemical and enzymatic modifications; cyanophycin; multi-L-arginyl-poly-l-aspartate; polyaminoacid.

Publication types

  • Review