Integration and functional performance of a decellularised porcine superflexor tendon graft in an ovine model of anterior cruciate ligament reconstruction

Biomaterials. 2021 Dec:279:121204. doi: 10.1016/j.biomaterials.2021.121204. Epub 2021 Oct 21.

Abstract

The objective was to evaluate the performance of decellularised porcine superflexor tendon (pSFT) as an anterior cruciate ligament (ACL) reconstruction device. The ACL of adult sheep was reconstructed with decellularised pSFT or ovine allograft SFT and animals sacrificed at 4, 12 and 26 weeks (n = 4 per group) for biological evaluation and 26 weeks (n = 6) for biomechanical evaluation of the grafts. Both grafts showed good in vivo performance with no major differences at macroscopic evaluation post euthanasia. Histopathology revealed an inflammatory reaction to both grafts at 4 weeks, which reduced by 26 weeks. There was advanced cellular ingrowth from 12 weeks, ligamentisation of intra-articular grafts, ossification and formation of Sharpey's fibers at the graft/bone junctions. Immunohistochemistry showed that at 4 and 12 weeks, the host response was dominated by CD163+ M2 macrophages and a cell infiltrate comprising α-SMA + myofibroblasts, CD34+ and CD271+ progenitor cells. At 26 weeks the biomechanical properties of decellularised pSFT and oSFT grafts were comparable, with all grafts failing in the intra-articular region. This study provides new insight into constructive remodelling of tendons used for ACL replacement and evidence of integration and functional performance of a decellularised xenogeneic tendon with potential as an alternative for ACL reconstruction.

Keywords: Anterior cruciate ligament reconstruction; Cell infiltration; Decellularised tendon; Immune response; In vivo biocompatibility; Tissue biomechanics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anterior Cruciate Ligament / surgery
  • Anterior Cruciate Ligament Injuries*
  • Anterior Cruciate Ligament Reconstruction*
  • Biomechanical Phenomena
  • Physical Functional Performance
  • Sheep
  • Swine
  • Tendons
  • Transplantation, Homologous