Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria

Curr Biol. 2021 Dec 20;31(24):5547-5557.e6. doi: 10.1016/j.cub.2021.10.019. Epub 2021 Nov 2.

Abstract

The exchange of metabolites among different bacterial genotypes profoundly impacts the structure and function of microbial communities. However, the factors governing the establishment of these cross-feeding interactions remain poorly understood. While shared physiological features may facilitate interactions among more closely related individuals, a lower relatedness should reduce competition and thus increase the potential for synergistic interactions. Here, we investigate how the relationship between a metabolite donor and recipient affects the propensity of strains to engage in unidirectional cross-feeding interactions. For this, we performed pairwise cocultivation experiments between four auxotrophic recipients and 25 species of potential amino acid donors. Auxotrophic recipients grew in the vast majority of pairs tested (63%), suggesting metabolic cross-feeding interactions are readily established. Strikingly, both the phylogenetic distance between donor and recipient and the dissimilarity of their metabolic networks were positively associated with the growth of auxotrophic recipients. Analyzing the co-growth of species from a gut microbial community in silico also revealed that recipient genotypes benefitted more from interacting with metabolically dissimilar partners, thus corroborating the empirical results. Together, our work identifies the metabolic dissimilarity between bacterial genotypes as a key factor determining the establishment of metabolic cross-feeding interactions in microbial communities.

Keywords: assembly rule; auxotrophy; bacteria; coculture; metabolic cross-feeding; metabolic dissimilarity; metabolic simulation; synergistic interaction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / genetics
  • Bacteria* / metabolism
  • Humans
  • Metabolic Networks and Pathways
  • Microbial Interactions
  • Microbiota*
  • Phylogeny

Substances

  • Amino Acids