An infrared spectroscopic study of trifluoromethoxybenzene⋯methanol complexes formed in superfluid helium nanodroplets

Phys Chem Chem Phys. 2021 Nov 17;23(44):25180-25187. doi: 10.1039/d1cp03136h.

Abstract

We have studied the intermolecular complex formation between trifluoromethoxybenzene and methanol (CD3OD) in superfluid helium droplets by infrared spectroscopy in the spectral range of 2630-2730 cm-1, covering the O-D stretches of methanol-d4 (CD3OD). The cluster size associated with the observed bands is deduced from the variation of infrared intensity of a particular band with the partial pressures of trifluoromethoxybenzene and methanol. Quantum chemical calculations are performed at the MP2/6-311++G(d,p) level of theory to complement the experimental results. As a result, we have identified six different conformers of the trifluoromethoxybenzene⋯methanol intermolecular complex: three bound via O-H⋯O hydrogen bonds and the other three via O-H⋯π hydrogen bonds. Furthermore, to access the effect of fluorination on the methyl unit of anisole molecules, we compare the IR spectrum of trifluoromethoxybenzene (C6H5OCF3)⋯methanol with our earlier reported spectrum of anisole (C6H5OCH3)⋯methanol.