Cholesterol-Lowering Intervention Decreases mTOR Complex 2 Signaling and Enhances Antitumor Immunity

Clin Cancer Res. 2022 Jan 15;28(2):414-424. doi: 10.1158/1078-0432.CCR-21-1535. Epub 2021 Nov 2.

Abstract

Purpose: There is a need for strategies to prevent prostate cancer. Cholesterol-lowering interventions are employed widely and safely to reduce risk of cardiovascular disease and has been proposed for chemoprevention. Using preclinical models and a window-of-opportunity clinical trial, we describe an adaptive antitumor immunity resulting from cholesterol lowering.

Experimental design: Statins do not reliably lower serum cholesterol in mice. Therefore, oral ezetimibe was administered to mice to lower serum cholesterol to clinically relevant levels and evaluated the final adaptive immune response. T-lymphocytes-specific mTORC2 knockout mice were used to evaluate mTOR signaling and antitumor immunity. Pretreatment and posttreatment prostate tumors and lymphocytes were examined from a window-of-opportunity clinical trial where men with prostate cancer were treated with 2 to 6 weeks of aggressive cholesterol-lowering intervention prior to radical prostatectomy.

Results: Mice treated with oral ezetimibe exhibited enhanced antitumor immunity against syngeneic cancers in a CD8+ lymphocyte-dependent manner, produced immunity that was transferrable through lymphocytes, and had enhanced central CD8+ T-cell memory. In mice and in patients undergoing prostatectomy, lowering serum cholesterol inhibited mTORC2 signaling in lymphocytes and increased infiltration of CD8+ lymphocytes into prostate tumors. T-lymphocyte-specific mTORC2 knockout mice demonstrated enhanced CD8+ lymphocyte function and antitumor capacity. In patients, cholesterol-lowering intervention prior to prostatectomy decreased the proliferation of normal prostate and low-grade adenocarcinomas.

Conclusions: Lowering serum cholesterol decreased signaling through mTORC2 and enhanced antitumor CD8+ T-cell memory. We provide a rationale for large-scale clinical testing of cholesterol lowering strategies for prostate cancer chemoprevention.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD8-Positive T-Lymphocytes*
  • Cholesterol
  • Humans
  • Male
  • Mechanistic Target of Rapamycin Complex 2
  • Mice
  • Mice, Knockout
  • Signal Transduction*
  • TOR Serine-Threonine Kinases

Substances

  • Cholesterol
  • MTOR protein, human
  • Mechanistic Target of Rapamycin Complex 2
  • TOR Serine-Threonine Kinases