Proteomic analysis of hypothalamus in prepubertal and pubertal female goat

J Proteomics. 2022 Jan 16:251:104411. doi: 10.1016/j.jprot.2021.104411. Epub 2021 Oct 30.

Abstract

The functions of proteins at the onset of puberty in goats remain largely unexplored. To identify the proteins regulating puberty in goats, we analysed protein abundance and pathways in the hypothalamus of female goats. We applied tandem mass tag (TMT) labelling, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and parallel reaction monitoring (PRM) to examine hypothalamus of pubertal (cases; n = 3) and prepubertal (controls; n = 3) goats. We identified 5119 proteins, including 69 differentially abundant proteins (DAPs), of which 35 were upregulated and 34 were downregulated. Fourteen DAPs were randomly selected to verify these results using PRM, and the results were consistent with the TMT quantitative results. DAPs were enriched in MAPK signalling pathway, Ras signalling pathway, Autophagy-animal, Endocytosis, and PI3K/Akt/mTOR signalling pathway categories. These pathways are related to embryogenesis, cell proliferation, cell differentiation, and promoting the release of gonadotropin-releasing hormone (GnRH) in the hypothalamus. In particular, PDGFRβ and MAP3K7 occupied important locations in the protein-protein interaction network. The results demonstrate that DAPs and their related signalling pathways are crucial in regulating puberty in goats. However, further research is needed to explore the functions of DAPs and their pathways to provide new insights into the mechanism of puberty onset. SIGNIFICANCE: In domestic animals, reaching the age of puberty is an event that contributes significantly to lifetime reproductive potential. And the hypothalamus functions directly in the complex systemic changes that control puberty. Our study was the first TMT proteomics analysis on hypothalamus tissues of pubertal goats, which revealed the changes of protein and pathways that are related to the onset of puberty. We identified 69 DAPs, which were enriched in the MAPK signaling pathway, the Ras signaling pathway, and the IGF-1/PI3K/Akt/mTOR pathway, suggesting that these processes were probably involved in the onset of puberty.

Keywords: Hypothalamus; Parallel reaction monitoring; Puberty; TMT proteomic analysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chromatography, Liquid
  • Female
  • Goats* / metabolism
  • Hypothalamus / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proteomics*
  • Tandem Mass Spectrometry