Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a

J Cachexia Sarcopenia Muscle. 2022 Feb;13(1):605-620. doi: 10.1002/jcsm.12833. Epub 2021 Nov 2.

Abstract

Background: Skeletal muscle atrophy is a severe condition that involves loss of muscle mass and quality. Drug intake can also cause muscle atrophy. Biguanide metformin is the first-line and most widely prescribed anti-diabetic drug for patients with type 2 diabetes. The molecular mechanism of metformin in muscle is unclear.

Methods: Myostatin expression was investigated at the protein and transcript levels after metformin administration. To investigate the pathways associated with myostatin signalling, we used real-time polymerase chain reaction, immunoblotting, luciferase assay, chromatin immunoprecipitation assay, co-immunoprecipitation, immunofluorescence, primary culture, and confocal microscopy. Serum analysis, physical performance, and immunohistochemistry were performed using our in vivo model.

Results: Metformin induced the expression of myostatin, a key molecule that regulates muscle volume and triggers the phosphorylation of AMPK. AMPK alpha2 knockdown in the background of metformin treatment reduced the myostatin expression of C2C12 myotubes (-49.86 ± 12.03%, P < 0.01) and resulted in increased myotube diameter compared with metformin (+46.62 ± 0.88%, P < 0.001). Metformin induced the interaction between AMPK and FoxO3a, a key transcription factor of myostatin. Metformin also altered the histone deacetylase activity in muscle cells (>3.12-fold ± 0.13, P < 0.001). The interaction between HDAC6 and FoxO3a induced after metformin treatment. Confocal microscopy revealed that metformin increased the nuclear localization of FoxO3a (>3.3-fold, P < 0.001). Chromatin immunoprecipitation revealed that metformin induced the binding of FoxO3a to the myostatin promoter. The transcript-level expression of myostatin was higher in the gastrocnemius (GC) muscles of metformin-treated wild-type (WT) (+68.9 ± 10.01%, P < 0.001) and db/db mice (+55.84 ± 6.62%, P < 0.001) than that in the GC of controls (n = 4 per group). Average fibre cross-sectional area data also showed that the metformin-treated C57BL/6J (WT) (-31.74 ± 0.75%, P < 0.001) and C57BLKS/J-db/db (-18.11 ± 0.94%, P < 0.001) mice had decreased fibre size of GC compared to the controls. The serum myoglobin level was significantly decreased in metformin-treated WT mice (-66.6 ± 9.03%, P < 0.01).

Conclusions: Our results demonstrate that metformin treatment impairs muscle function through the regulation of myostatin in skeletal muscle cells via AMPK-FoxO3a-HDAC6 axis. The muscle-wasting effect of metformin is more evident in WT than in db/db mice, indicating that more complicated mechanisms may be involved in metformin-mediated muscular dysfunction.

Keywords: AMPK; FoxO3a; HDAC6; Metformin; Muscle atrophy; Myostatin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diabetes Mellitus, Type 2* / complications
  • Diabetes Mellitus, Type 2* / drug therapy
  • Histone Deacetylase 6 / metabolism
  • Humans
  • Metformin* / metabolism
  • Metformin* / pharmacology
  • Metformin* / therapeutic use
  • Mice
  • Mice, Inbred C57BL
  • Muscle, Skeletal / pathology
  • Muscular Atrophy / etiology
  • Myostatin / genetics
  • Myostatin / metabolism

Substances

  • Myostatin
  • Metformin
  • HDAC6 protein, human
  • Histone Deacetylase 6