Seed viability and fatty acid profiles of five orchid species before and after ageing

Plant Biol (Stuttg). 2022 Jan;24(1):168-175. doi: 10.1111/plb.13345. Epub 2021 Nov 1.

Abstract

Changes in seed lipid composition during ageing are associated with seed viability loss in many plant species. However, due to their small seed size, this has not been previously explored in orchids. We characterized and compared the seed viability and fatty acid profiles of five orchid species before and after ageing: one tropical epiphytic orchid from Indonesia (Dendrobium strebloceras), and four temperate species from New Zealand, D. cunninghamii (epiphytic), and Gastrodia cunninghamii, Pterostylis banksii and Thelymitra nervosa (terrestrial). Seeds were aged under controlled laboratory conditions (3-month storage at 60% RH and 20 °C). Seed viability was tested before and after ageing using tetrazolium chloride staining. Fatty acid methyl esters from fresh and aged seeds were extracted through trans-esterification, and then analysed using gas chromatography-mass spectrometry. All species had high initial viability (>80%) and experienced significant viability loss after ageing. The saturated, polyunsaturated, monounsaturated and total fatty acid content decreased with ageing in all species, but this reduction was only significant for D. strebloceras, D. cunninghamii and G. cunninghamii. Our results suggest that fatty acid degradation is a typical response to ageing in orchids, albeit with species variation in magnitude, but the link between fatty acid degradation and viability was not elucidated. Pterostylis banksii exemplified this variation; it showed marked viability loss despite not having a significant reduction in its fatty acid content after ageing. More research is required to identify the effect of ageing on fatty acid composition in orchids, and its contribution to seed viability loss.

Keywords: Epiphytic Dendrobium; fatty acid methyl esters (FAMEs); gas chromatography (GC); seed lipids; seed storage; terrestrial orchids.

MeSH terms

  • Fatty Acids*
  • Gas Chromatography-Mass Spectrometry
  • Orchidaceae*
  • Seeds

Substances

  • Fatty Acids