Mainstream Nitrogen and Dissolved Methane Removal through Coupling n-DAMO with Anammox in Granular Sludge at Low Temperature

Environ Sci Technol. 2021 Dec 21;55(24):16586-16596. doi: 10.1021/acs.est.1c01952. Epub 2021 Nov 1.

Abstract

Mainstream anaerobic wastewater treatment has received increasing attention for the recovery of methane-rich biogas from biodegradable organics, but subsequent mainstream nitrogen and dissolved methane removal at low temperatures remains a critical challenge in practical applications. In this study, granular sludge coupling n-DAMO with Anammox was employed for mainstream nitrogen removal, and the dissolved methane removal potential of granular sludge at low temperatures was investigated. A stable nitrogen removal rate (0.94 kg N m-3 d-1 at 20 °C) was achieved with a high-level effluent quality (<3.0 mg TN L-1) in a lab-scale membrane granular sludge reactor (MGSR). With decreasing temperature, the nitrogen removal rate dropped to 0.55 kg N m-3 d-1 at 10 °C, while the effluent concentration remained <1.0 mg TN L-1. The granular sludge with an average diameter of 1.8 mm proved to retain sufficient biomass (27 g VSS L-1), which enabled n-DAMO and Anammox activity at a hydraulic retention time as low as 2.16 h even at 10 °C. 16S rRNA gene sequencing and scanning electron microscopy revealed a stable community composition and compact structure of granular sludge during long-term operation. Energy recovery could be maximized by recovering most of the dissolved methane in mainstream anaerobic effluent, as only a small amount of dissolved methane was capable of supporting denitrifying methanotrophs in granular sludge, which enabled high-level nitrogen removal.

Keywords: dissolved methane; granular sludge; mainstream; nitrate/nitrite-dependent anaerobic methane oxidation; nitrogen removal.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonium Compounds*
  • Anaerobic Ammonia Oxidation
  • Anaerobiosis
  • Bioreactors
  • Denitrification
  • Methane*
  • Nitrogen
  • Oxidation-Reduction
  • RNA, Ribosomal, 16S / genetics
  • Sewage
  • Temperature

Substances

  • Ammonium Compounds
  • RNA, Ribosomal, 16S
  • Sewage
  • Nitrogen
  • Methane