Synthesis and Antiplatelet Adhesion Behavior of a Poly(L-lactide- co-glycolide)-Poly(1,5-dioxepan-2-one) Multiblock Copolymer

ACS Omega. 2021 Oct 13;6(42):27968-27975. doi: 10.1021/acsomega.1c03846. eCollection 2021 Oct 26.

Abstract

Platelet adhesion and denaturation on artificial medical implants induce thrombus formation. In this study, bioabsorbable copolymers composed of poly(l-lactide-co-glycolide) (PLGA) and poly(1,5-dioxepan-2-one) (PDXO) were synthesized and evaluated for their antiplatelet adhesive properties. The PLGA-PXO multiblock copolymer (PLGA-PDXO MBC) and its random copolymer (PLGA-PDXO RC) showed effective antiplatelet adhesive properties, and the number of adhered platelets was similar to those adhered on poly(2-methoxyethylacrylate), a known antiplatelet adhesive polymer, although a large number of denatured platelets were observed on a PLGA-poly(ε-caprolactone) multiblock copolymer (PLGA-PCL MBC). Using monoclonal antifibrinogen IgG antibodies, we also found that both αC and γ-chains, the binding sites of fibrinogen for platelets, were less exposed on the PLGA-PDXO MBC surface compared to PLGA-PCL MBC. Furthermore, free-standing films of PLGA-PDXO MBC were prepared by casting the polymer solution on glass plates and showed good tensile properties and slow hydrolytic degradation in phosphate-buffered saline (pH = 7.4). We expect that the unique properties of PLGA-PDXO MBC, i.e., antiplatelet adhesive behavior, good tensile strength, and hydrolytic degradation, will pave the way for the development of new bioabsorbable implanting materials suitable for application at blood-contacting sites.