Cell spinpods are a simple inexpensive suspension culture device to deliver fluid shear stress to renal proximal tubular cells

Sci Rep. 2021 Oct 29;11(1):21296. doi: 10.1038/s41598-021-00304-8.

Abstract

Rotating forms of suspension culture allow cells to aggregate into spheroids, prevent the de-differentiating influence of 2D culture, and, perhaps most importantly of all, provide physiologically relevant, in vivo levels of shear stress. Rotating suspension culture technology has not been widely implemented, in large part because the vessels are prohibitively expensive, labor-intensive to use, and are difficult to scale for industrial applications. Our solution addresses each of these challenges in a new vessel called a cell spinpod. These small 3.5 mL capacity vessels are constructed from injection-molded thermoplastic polymer components. They contain self-sealing axial silicone rubber ports, and fluoropolymer, breathable membranes. Here we report the two-fluid modeling of the flow and stresses in cell spinpods. Cell spinpods were used to demonstrate the effect of fluid shear stress on renal cell gene expression and cellular functions, particularly membrane and xenobiotic transporters, mitochondrial function, and myeloma light chain, cisplatin and doxorubicin, toxicity. During exposure to myeloma immunoglobulin light chains, rotation increased release of clinically validated nephrotoxicity cytokine markers in a toxin-specific pattern. Addition of cisplatin or doxorubicin nephrotoxins reversed the enhanced glucose and albumin uptake induced by fluid shear stress in rotating cell spinpod cultures. Cell spinpods are a simple, inexpensive, easily automated culture device that enhances cellular functions for in vitro studies of nephrotoxicity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Culture Techniques / methods*
  • Cell Line
  • Epithelial Cells / cytology*
  • Humans
  • Kidney Tubules, Proximal / cytology*
  • Stress, Mechanical