Peptide-induced membrane elastic deformations decelerate gramicidin dimer-monomer equilibration

Biophys J. 2021 Dec 7;120(23):5309-5321. doi: 10.1016/j.bpj.2021.10.030. Epub 2021 Oct 27.

Abstract

Gramicidin A (gA) is a hydrophobic pentadecapeptide readily incorporating into a planar bilayer lipid membrane (BLM), thereby inducing a large macroscopic current across the BLM. This current results from ion-channel formation due to head-to-head transbilayer dimerization of gA monomers with rapidly established monomer-dimer equilibrium. Any disturbance of the equilibrium, e.g., by sensitized photoinactivation of a portion of gA monomers, causes relaxation toward a new equilibrium state. According to previous studies, the characteristic relaxation time of the gA-mediated electric current decreases as the current increases upon elevating the gA concentration in the membrane. Here, we report data on the current relaxation kinetics for gA analogs with N-terminal valine replaced by glycine or tyrosine. Surprisingly, the relaxation time increased rather than decreased upon elevation of the total membrane conductance induced by these gA analogs, thus contradicting the classical kinetic scheme. We developed a general theoretical model that accounts for lateral interaction of monomers and dimers mediated by membrane elastic deformations. The modified kinetic scheme of the gramicidin dimerization predicts the reverse dependence of the relaxation time on membrane conductance for gA analogs, with a decreased dimerization constant that is in a good agreement with our experimental data. The equilibration process may be also modulated by incorporation of other peptides ("impurities") into the lipid membrane.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dimerization
  • Gramicidin* / metabolism
  • Ion Channels / metabolism
  • Lipid Bilayers*
  • Peptides

Substances

  • Ion Channels
  • Lipid Bilayers
  • Peptides
  • Gramicidin